
ACM SIGSOFT Software Engineering Notes vol 24 no 4 July 1999 Page 84

Roles In The Maintenance Process 1
Macario Polo, Mario Piattini, Francisco Ruiz, Coral Calero

Grupo ALARCOS; Escuela Superior de Inforrn itica
Universidad de Castilla-La Mancha.

E13071-Ciudad Real (Spain)
{mpolo, mpiattin, fruiz, ccalero}@inf-cr.uclm.es

Abstract
Software maintenance is the most expensive and least predictable
stage of the soth~are life cycle, representing in some cases be-
tween 67% and 90% of total costs.

On the other hand, it is well known that the structure of a work
team influences on the productivity of its members. We can help
to decrease costs of maintenance through the definition of an ade-
quate structure of the work team and with the clear identification
of the tasks which every member must execute.

In this work we expose the results that, in this sense, we have
obtained from the application of MANTEMA to real projects.
MANTEMA is a methodology for supporting software mainte-
nance, developed jointly by our university and Atos ODS, an in-
ternational enterprise among whose primary business activities is
the outsourcing of software maintenance. Atos ODS is using
MANTEMA in big projects of Spanish banking.

properties of work teams on life cycle costs (except some versions
of Brook's Law [6]).

In the Maintenance process, the possibility of heading off any
source of costs must be seriously analysed and studied. In this
paper, we discuss how to help to reduce costs of Maintenance,
through the definition of the different organisations which must
intervene in this process, and providing a set of well-defined pro-
files for every one.

These results are the product of the application of MANTEMA
methodology for software maintenance [7] to Spanish banking
projects.

Our environment and Work method.
MANTEMA has been developed in the University of Castilla-La
Mancha, in collaboration with Atos ODS, an international or-
ganisation among whose main business activities is the
outsourcing of software maintenance.

Keywords: Maintenance, Software Life Cycle, Work team.

Introduction
Costs of maintenance, which is the most costly stage of the soft-
ware life cycle [1], are influenced by a big set of factors, well
characterised in the literature. Among they [2] has pointed out the
following as the most important ones:

• Modification requests study
• Documentation study
* Source code study
• Source code modification
• Documentation updating
• Test design and execution

On the other hand, it is known that the structure and other prop-
erties of work team have some influence on their productivity [3].
So, for example, the making-up of teams with no more than ten
persons is recommended [4] [5], in order to obtain a high level of
cohesion among its members and to avoid an excessive number of
communication views, which would exert a bad influence on team
productivity.

Setting aside these qualitative appreciations, there are not, how-
ever, many quantitative studies which reflect the impact of the

Outsourcing is a fast growing activity, with an increasing number
of organisations providing this service [8]. Then, in this highly
competitive market, the implementation of a strict methodology
for supporting maintenance of third-party organisations (besides
it facilitates the sale of this kind of service) turns the Maintenance
into a well defined, controlled and measurable process.

The outsourcing of software maintenance involves at least three
organisations -all of them with some common goals (the right
operation of the software, for example), but also with some oppo-
site interests (money)- which we will discuss later:

• The Maintainer
• The Customer
• The User

The right definition of the relationships among these three kinds
of organisations was a very important issue during the building ot
MANTEMA. Bringing together, incorporating relationships has
been done at "task level": briefly, in MANTEMA we define five
sets of activities to be performed for each of the five types ot
maintenance interventions we distinguish (urgent corrective, non-
urgent corrective, peffective, preventive and adaptive). Further-
more, two special sets of activities (common to all intervention
types) are defined to be carried out when the maintenance process
is going to be contracted out and when this is going to be finished
(after all the maintenance interventions).

l This work is part of the MANTICA project (CICYT IFD-097-0168) and the MANTEMA project (carried out by Atos ODS, S.A. and Universided de Castilla-La Mancha;
ATYCA, Direcci6n General de Tocnologia y Seguridad Industrial of the MINER, Ministerio de Industria y Energia, Spain).

ACM SIGSOFT Software Engineering Notes vol 24 no 4 July 1999 Page 85

Following the idea of the ISO/IEC 12207 International Standard
[9], that we have taken as a basis for constructing the methodol-
ogy, every activity is composed of a set of tasks. For every task,
we define the required inputs in order to execute the task accord-
ing to some techniques we also describe, what outputs must be
produced for executing the following task, what metrics must be
collected and -we already arrive at the main purpose of this paper-
who are the people who must take part in the task.

In the first stages of ~ANTEMA creation, we did not define
strictly what people should take action in every task. Obviously,
we knew that the modification of a line of source code could not
be done either by an user or by the head of the customer organi-
sation. However, we considered that the nature of every task itself
was meaningful enough to ensure that every person knew what
tasks he/she should take part in.

But the valuable feedback proceeding of the practical application
of the methodology,, which has followed the Action-Research
method [10], revealed some little communication problems in
certain tasks, especially of those belonging to the common initial
and final activities and tasks, and of those executed at the begin-
ning and at the end of the maintenance interventions.

Definition of people.
Taking as a starting point the three roles mentioned in the previ-
ous section, and kno~ng that a distinction must be made for dis-
tinguishing the persomlel, we define some profiles for every
organisation.

This definition is based (m [11], [12] and our own practical expe-
rience acquired in the application of the methodology.

Before detailing and explaining these profiles, we define the three
organisations as follows:
• Customer organization.
This organisation com~sponds with the Acquirer defined in
ISO/IEC 12207 [9]. We define it as the organisation which owns
the software and reqmres the maintenance service.

• Maintainer.
The organization wluch supplies the maintenance service.

• User.
The organization that uses the maintained software.

The profiles we define tor every one are listed below. This enu-
meration is not rigid, since it may be tailored to every particular
case, as we will see in the next section.

1)
Customer profiles.
The Petitioner: who promotes a Modification Request and
establishes the needed requirements for its implementation
and informs to the nmintainer.

2) The System organization: this is the department that has a
good knowledge of the system that will be maintained. This
profile is useful because

3) The Help-desk" this is the department which attends to users.
It also reports to the Petitioner the incidents sent by users to
generate the Modification Request.

• Maintainer profiles.
1) The Maintenance-request manager: decides whether the

modification requests are accepted or rejected and what type
of maintenance should be applied. He/She gives every Modi-
fication Request to the Scheduler.

2) The Scheduler: must plan the queue of accepted modification
requests.

3) The Maintenance team: is the group of people who imple-
ment the accepted modification request. They take modifica-
tion requests from the queue, which is managed by the
Scheduler. The structure of this team (and, in general, of any
possible MANTEMA team) is an affair that must be sorted
out by the Maintainer. An organisation which provides soft-
ware maintenance services according to MANTEMA must
have identified these profiles (excepting the possible tailoring
cases mentioned in section 4), but the Internal structure of the
team is not MANTEMA's responsibility.

4) The Head of Maintenance: prepares the maintenance stage.
He/She also establishes the standards and procedures to be
followed with the maintenance methodology used. He/She
plays an important role in the common initial set of activities
of MANTEMA methodology.

• User profile.
1) The User: makes use of the maintained software. He/She

communicates the incidents to the Help-desk.

Tailoring.
The activities and tasks structure of MANTEMA can be tailored
to different types of maintenance processes, with or without
outsour¢ing, for example.

In this section, we focus our attention in the tailoring of
MANTEMA participant organisations and their profiles. The
main idea to do this tailoring is to assume that different profiles
can coincide with the same person or group of people. Therefore,
when there is just one organisation which uses, owns and main-
tains the software product, the three afore-mentioned organisa-
tions coincide with the "super-organisation" and it is the "super-
organisation's" responsibility to gather the different o rganisations
in itself, and even, of concentrating different organisations or
profiles in only one person.

In conclusion: each one of the three organizations listed in the
previous section may be a different organisation, but this is not
always so. Sometimes two or more different profiles may coexist
in the same person. However, it is very important that every per-
son be fully aware of all his/her roles at every moment.

ACM SIGSOFT Software Engineering Notes vol 24 no 4 July 1999 Page 86

Conclusions.
In this paper we have presented the organisations that must take
part in the software maintenance process, using as a framework
the MANTEMA methodology.

B o o k R e v i e w s

Maintenance is the most expensive process of the software life
cycle. One of the factors which influence the cost of any software
process is the structure of the work team. An adequate distribu-
tion of the people can help to reduce the costs of such processes.
Specially in maintenance, any costs reduction will be welcome.
We think that the structure of organisations and profiles shown is
useful for those enterprises concerned with software maintenance,
as Atos ODS.

References.
[1] Card, D.N. and Glass, R.L. (1990): Measuring Software Design
Quality. Englewood Cliffs, USA.

[2] MeClure, C. (1992) The Three R's of Software Automation: Re-
engineering, Repository, Reusability. Prentice-Hall, USA.

[3] MeConnell, S. (1996) Desarrollo y Gesti6n de Prayectos Inform6ti-
cos. McGrawHill-Mierosoft Press.

[4] Emery and Emery (1975) Participative Design-Work and Commu-
nity. Center for Continuing Education, Australian National University.

[5] Bayer and I-Iighsmirth (1994). RADical software development,
American Programmer, june, pp. 35-42.

[6] Brooks, F. P. (1995) The Mythical Man-Month. Essays on Software
Engineering Anniversary Edition. Addison-Wesley, USA.

[7] Polo, M., Piattini, M., Ruiz, F. and Calero, C. (1999). MANTEMA: a
Complete Rigorous Methodology for Supporting Maintenance based on
The ISO/IEC 12207 Standard. Proceedings of the Third European Con-
ferance on Software Maintenance and Reengineering. Amsterdam (The
Netherlands).

[8] ACM (1996). Communications of the ACM (contains a monograph
about outsonrcing), vol. 39, no 7

[9] ISO/IEC (1995) International Standard Organization. ISO 12207:
Information Technology-Software Life Cycle Processes. Swiss.

[10] Checkland, P. (1981). Systems Thinking, System Practice. Wiley,
Chichester, U.K.

[11] IEEE (1992). IEEE Std 1219-1992. Standard for Software Mainte-
I]al lee.

[12] Mazza, C., Fairclough, J., Melton, B., de Pablo, D., Scheffer, A.
and Stevens,R. (1994). Software Engineering Standards. Prentice-Hall.

T h e N e t s c a p e P r o g r a m m e r ' s G u i d e : U s i n g O L E
t o B u i l d C o m p o n e n t w a r e A p p s

Richard B. Lam

The Netscape Programmer's Guide is written by Richard B.
Lam and published by Cambridge University Press, 1998, pa-
perback, ISBN: 0-521-64820-3, 394 pp. $39.95

Dr. Lam has written a comprehensive tutorial on integrat-
ing a range of software products with Netscape's Navigator.
The subtitle of this book is important, because a relatively
small portion of The Netscape Programmer's Guide actually
deals with the Netscape applications programming interface
(APIA). The code samples and applications are all specific to
the Microsoft operating environment, and depend especially
on the use of DDE and OLE. The preface states explicitly
that, "The book is aimed at software professionals program-
ruing for the Windows 95 environment." In fact, it is an excel-
lent beginner's book for those with elementary programming
experience in Visual Basic and C++. It should be applicable
to any Win32 environment. Programmers who work primar-
ily outside the Microsoft realm will find this book of marginal
utility, but still informative. Those who are already expe-
rienced with implementing DDE and OLE servers may find
about half of the book to be repetitive. The (by now obliga-
tory) CD that comes with the book contains not only sources
shown in the book, but also compiled versions of dynamic link
libraries and executables, as well as associated project files.
This is an excellent decision, since few programmers will have
at their disposal the range of software used throughout the
book.

After a brief introduction, the book proceeds immediately
with construction of an OLE server in Microsoft's Visual
Basic. The pattern in the book is to use Visual Basic as
the primary language and C + + as the API implementation
language, ostensibly due to reserved word conflicts with the
Netscape API. (The code examples use Borland C + + 4.5).
Dr. Lam keeps the coding straightforward and well explained.
The C++ is self-contained, although extensive. Basic pro-
grammers could scan these sections and then just use the
files on the CD as components. C + + programmers should
have no difficulty in using a visual C + + tool to replace the
Basic code. Once through the construction of an OLE au-
tomation controller, the next chapter takes up the use of the
DDE interface. This is where the Netscape API is first for-
mally introduced, but there is nothing special about the use of
Netscape programming here. The next chapter returns to the
use of the previous OLE work. It is here, on page 171 of 363
that the reader finally starts to do some specifically Netscape
programming. A brief discussion of protocol handlers follows
that. Chapter 7 describes how to connect to a Lotus Notes

